Caltech

[Uniqueness of](#page-101-0) GQDs

Andrew Graven

[Quadrature](#page-2-0)

Theory

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

Uniqueness of Generalized Quadrature Domains via the Faber Transform

Andrew Graven Caltech Department of Mathematics (joint work with Nikolai Makarov)

> IWOTA 2024 August 16, 2024

With support from

Table of Contents **Caltech**

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

1 [Quadrature Domains](#page-2-0)

2 [Potential Theory](#page-22-0)

3 [The Faber Transform](#page-30-0)

4 [Existence and Uniqueness of One Point UQDs](#page-37-0)

5 [Power-Weighted Quadrature Domains](#page-69-0)

6 [Future work](#page-90-0)

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

Mean value property: 1

$$
f \in \mathcal{A}(\mathbb{D}_r(w_0)) \implies \frac{1}{r^2} \int_{\mathbb{D}_r(w_0)} f dA = f(w_0).
$$

Epstein & Schiffer (1965): $\mathbb{D}_r(w_0)$ is the only² domain with this property.

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

Mean value property: 1

$$
f \in \mathcal{A}(\mathbb{D}_r(w_0)) \implies \frac{1}{r^2} \int_{\mathbb{D}_r(w_0)} f dA = f(w_0).
$$

Epstein & Schiffer (1965): $\mathbb{D}_r(w_0)$ is the only² domain with this property.

The cardioid,
$$
\Omega = \left\{ z + \frac{z^2}{2} : z \in \mathbb{D} \right\}
$$
:
 $f \in \mathcal{A}(\Omega) \implies \int_{\Omega} f dA = \frac{3}{2} f(0) + \frac{1}{2} f'(0).$

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

Mean value property: 1

$$
f \in \mathcal{A}(\mathbb{D}_r(w_0)) \implies \frac{1}{r^2} \int_{\mathbb{D}_r(w_0)} f dA = f(w_0).
$$

Epstein & Schiffer (1965): $\mathbb{D}_r(w_0)$ is the only² domain with this property.

The cardioid,
$$
\Omega = \left\{ z + \frac{z^2}{2} : z \in \mathbb{D} \right\}
$$
:
 $f \in \mathcal{A}(\Omega) \implies \int_{\Omega} f dA = \frac{3}{2} f(0) + \frac{1}{2} f'(0).$

Aharonov & Shapiro (1976): The cardioid is also unique.

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

Mean value property: 1

$$
f \in \mathcal{A}(\mathbb{D}_r(w_0)) \implies \frac{1}{r^2} \int_{\mathbb{D}_r(w_0)} f dA = f(w_0).
$$

Epstein & Schiffer (1965): $\mathbb{D}_r(w_0)$ is the only² domain with this property.

The cardioid,
$$
\Omega = \left\{ z + \frac{z^2}{2} : z \in \mathbb{D} \right\}
$$
:
 $f \in \mathcal{A}(\Omega) \implies \int_{\Omega} f dA = \frac{3}{2} f(0) + \frac{1}{2} f'(0).$

Aharonov & Shapiro (1976): The cardioid is also unique.

Caltech Quadrature Identities

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

Mean value property: 1

$$
f \in \mathcal{A}(\mathbb{D}_r(w_0)) \implies \frac{1}{r^2} \int_{\mathbb{D}_r(w_0)} f dA = f(w_0).
$$

Epstein & Schiffer (1965): $\mathbb{D}_r(w_0)$ is the only² domain with this property.

The cardioid,
$$
\Omega = \left\{ z + \frac{z^2}{2} : z \in \mathbb{D} \right\}
$$
:
 $f \in \mathcal{A}(\Omega) \implies \int_{\Omega} f dA = \frac{3}{2} f(0) + \frac{1}{2} f'(0).$

Aharonov & Shapiro (1976): The cardioid is also unique.

These are examples of *quadrature identities*.

Bounded Quadrature Domains **Caltech**

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

Definition 1.1 (Bounded Quadrature domain)

A bounded domain $\Omega \subset \widehat{\mathbb{C}}$ is a *bounded* QD if there exists $h \in \text{Rat}_0(\Omega)$ s.t.³⁴

$$
\int_{\Omega} f dA = \frac{1}{2\pi i} \oint_{\partial \Omega} f(w) h(w) dw
$$

 $\forall f \in A(\Omega)$. This is denoted by $\Omega \in \mathsf{QD}(h)$. (we also assume $\infty \notin \partial \Omega$)

 $^3{\sf Rat}(\Omega)={\sf space}$ of rational functions analytic in $\Omega^c.$ (all poles are in $\Omega)$ ${}^{4}Rat_{0}(\Omega) = \{f \in Rat(\Omega) : f(\infty) = 0\}$

Bounded Quadrature Domains **Caltech**

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

Definition 1.1 (Bounded Quadrature domain)

A bounded domain $\Omega \subset \widehat{\mathbb{C}}$ is a *bounded* QD if there exists $h \in \text{Rat}_0(\Omega)$ s.t.³⁴

$$
\int_{\Omega} f dA = \frac{1}{2\pi i} \oint_{\partial \Omega} f(w) h(w) dw
$$

 $\forall f \in A(\Omega)$. This is denoted by $\Omega \in QD(h)$. (we also assume $\infty \notin \partial \Omega$)

Residue theorem \rightarrow quadrature domain \iff quadrature identity 1 2πi \overline{a} ∂Ω $f(w)h(w)dw = \sum$ poles p_k of h $Res_{w=p_k}(f(w)h(w)) = \sum_{k=1}^{k}$ k,j $c_{k,j} f^{(n_j)}(p_k)$.

 $^3{\sf Rat}(\Omega)={\sf space}$ of rational functions analytic in $\Omega^c.$ (all poles are in $\Omega)$ ${}^{4}Rat_{0}(\Omega) = \{f \in Rat(\Omega) : f(\infty) = 0\}$

Bounded Quadrature Domains **Caltech**

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

Definition 1.1 (Bounded Quadrature domain)

Ω

A bounded domain $\Omega \subset \widehat{\mathbb{C}}$ is a *bounded* QD if there exists $h \in \text{Rat}_0(\Omega)$ s.t.³⁴

$$
\int_{\Omega} f dA = \frac{1}{2\pi i} \oint_{\partial \Omega} f(w) h(w) dw
$$

 $\forall f \in A(\Omega)$. This is denoted by $\Omega \in \mathsf{QD}(h)$. (we also assume $\infty \notin \partial \Omega$)

Residue theorem \rightarrow quadrature domain \iff quadrature identity 1 2πi \overline{a} ∂Ω $f(w)h(w)dw = \sum$ poles p_k of h $Res_{w=p_k}(f(w)h(w)) = \sum_{k=1}^{k}$ k,j $c_{k,j} f^{(n_j)}(p_k)$. $Can also write: $\sqrt{a}$$ $fdA = \mu(f)$, where $\mu = \overline{\partial}h = \sum$ $(c_{k,j}(-1)^{n_j+1}\delta_{p_k}^{(n_j)}$

 $k,$ j

 $^3{\sf Rat}(\Omega)={\sf space}$ of rational functions analytic in $\Omega^c.$ (all poles are in $\Omega)$ ${}^{4}Rat_{0}(\Omega) = \{f \in Rat(\Omega) : f(\infty) = 0\}$

Unbounded Quadrature Domains Caltech

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

Definition 1.2 (Unbounded Quadrature Domain)

An unbounded domain $\Omega \subset \widehat{\mathbb{C}}$ is an unbounded QD if $\exists h \in \text{Rat}(\Omega)$ s.t.

$$
\int_{\Omega} f dA = \frac{1}{2\pi i} \oint_{\partial \Omega} f(w) h(w) dw
$$

 $\forall f \in A_0(\Omega)$. This is denoted by $\Omega \in \mathbb{Q}(\hbar)$. (we also assume $\infty \notin \partial \Omega$)

Caltech Unbounded Quadrature Domains

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

Definition 1.2 (Unbounded Quadrature Domain)

An unbounded domain $\Omega \subset \widehat{\mathbb{C}}$ is an unbounded QD if $\exists h \in \text{Rat}(\Omega)$ s.t.

$$
\int_{\Omega} f dA = \frac{1}{2\pi i} \oint_{\partial \Omega} f(w) h(w) dw
$$

 $\forall f \in \mathcal{A}_0(\Omega)$. This is denoted by $\Omega \in \mathbb{Q}D(h)$. (we also assume $\infty \notin \partial \Omega$)

unbounded QD ←→ quadrature identity

$$
\frac{1}{2\pi i}\oint_{\partial\Omega}f(w)h(w)dw = \sum_{k,j}c_{k,j}f^{(n_j)}(p_k) + \sum_j c_jf_j
$$

where $f(w) = \sum_{j=1}^{\infty} f_j w^{-j}$.

Schwarz Function **Caltech**

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

 $5 \doteq$ denotes equality on the boundary. 6 $C^{\Omega^c}(w) = \lim_{r \to \infty} \frac{1}{\pi}$ π ˆ $\Omega^c \cap \mathbb{D}_r$ $dA(\xi)$ $w - \xi$

Remark: $\Omega \subset \widehat{\mathbb{C}}$ is a QD iff it admits a Schwarz function $S : \Omega \to \widehat{\mathbb{C}}$.

Schwarz Function **Caltech**

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

Remark: $\Omega \subset \widehat{\mathbb{C}}$ is a QD iff it admits a Schwarz function $S : \Omega \to \widehat{\mathbb{C}}$.

A S−function is a continuous map

 $S: Cl(\Omega) \to \widehat{\mathbb{C}}$

such that $S \in \mathcal{M}(\Omega)$ and⁵

 $S(w) \dot{=}\overline{w}$

 $dA(\xi)$ $w - \xi$

 $5 \doteq$ denotes equality on the boundary. 6 $C^{\Omega^c}(w) = \lim_{r \to \infty} \frac{1}{\pi}$ π ˆ $\Omega^c \cap \mathbb{D}_r$

Schwarz Function **Caltech**

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

Theory

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

Remark: $\Omega \subset \widehat{\mathbb{C}}$ is a QD iff it admits a Schwarz function $S : \Omega \to \widehat{\mathbb{C}}$.

A S−function is a continuous map

 $S: Cl(\Omega) \to \widehat{\mathbb{C}}$

such that $S \in \mathcal{M}(\Omega)$ and⁵

 $S(w) \dot{=}\overline{w}$

Also,

$$
S(w) = h(w) + C^{\Omega^c}(w), \quad w \in \Omega
$$

 $dA(\xi)$ $w - \xi$

(where C^{Ω^c} is understood in terms of its Cauchy principal value) 6

 $5 \doteq$ denotes equality on the boundary. 6 $C^{\Omega^c}(w) = \lim_{r \to \infty} \frac{1}{\pi}$ π ˆ $\Omega^c \cap \mathbb{D}_r$

Unbounded QD Example: The Deltoid **Caltech**

 \sim

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

 \bullet

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

The complement of the deltoid is an unbounded quadrature domain, $Ω = {z + \frac{1}{2z}}$ $\frac{1}{2z^2}:|z|>1\big\}\in \mathsf{QD}\left(\frac{w^2}{2}\right)$ $\frac{\nu^2}{2}$:

$$
\int_{\Omega} f dA = \frac{1}{2\pi i} \oint_{\partial \Omega} f(w) \frac{w^2}{2} dw
$$

Unbounded QD Example: The Deltoid **Caltech**

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

 \bullet

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

The complement of the deltoid is an unbounded quadrature domain, $Ω = {z + \frac{1}{2z}}$ $\frac{1}{2z^2}:|z|>1\big\}\in \mathsf{QD}\left(\frac{w^2}{2}\right)$ $\frac{\nu^2}{2}$:

$$
\int_{\Omega} f dA = \frac{1}{2\pi i} \oint_{\partial \Omega} f(w) \frac{w^2}{2} dw = \frac{1}{2} f_3
$$

 \sim

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

Question: When is a QD uniquely associated to its quadrature function?

i.e. For what rational functions h is there a unique s.c. domain $\Omega \in \mathbb{Q}(\mathbb{D})$?

Novikoff, P.P.: Sur le problème inverse du potentiel. (1938) Gustafsson, B., Putinar, M.: Selected topics on quadrature domains. (2007) Aharonov, D., Shapiro, H.S.: Domains on which analytic functions satisfy quadrature identities. (1976)

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

Question: When is a QD uniquely associated to its quadrature function?

i.e. For what rational functions h is there a unique s.c. domain $\Omega \in \mathbb{Q}(\mathbb{D})$?

Example: The disk is the unique s.c. *bounded* domain with the mean value property. In terms of QDs, $\mathbb{D}_r(w_0)$ is the unique s.c. domain in QD $\left(\frac{r^2}{w_-}\right)$ $w-w_0$.

 7 Novikoff, P.P.: Sur le problème inverse du potentiel. (1938) 8 Gustafsson, B., Putinar, M.: Selected topics on quadrature domains. (2007) $9A$ haronov, D., Shapiro, H.S.: Domains on which analytic functions satisfy quadrature identities. (1976)

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

Theory

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

Question: When is a QD uniquely associated to its quadrature function?

i.e. For what rational functions h is there a unique s.c. domain $\Omega \in \mathbb{Q}(\mathbb{D})$?

Example: The disk is the unique s.c. *bounded* domain with the mean value property. In terms of QDs, $\mathbb{D}_r(w_0)$ is the unique s.c. domain in QD $\left(\frac{r^2}{w_-}\right)$ $w-w_0$. Other known results:

 \bullet If $\Omega_1, \Omega_2 \in \mathsf{QD}(h)$ are star-shaped wrt a common point, then $\Omega_1 = \Omega_2.7$

 7 Novikoff, P.P.: Sur le problème inverse du potentiel. (1938)

 8 Gustafsson, B., Putinar, M.: Selected topics on quadrature domains. (2007)

 $9A$ haronov, D., Shapiro, H.S.: Domains on which analytic functions satisfy quadrature identities. (1976)

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

Theory

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

Question: When is a QD uniquely associated to its quadrature function?

i.e. For what rational functions h is there a unique s.c. domain $\Omega \in \mathbb{Q}(\mathbb{D})$?

Example: The disk is the unique s.c. *bounded* domain with the mean value property. In terms of QDs, $\mathbb{D}_r(w_0)$ is the unique s.c. domain in QD $\left(\frac{r^2}{w_-}\right)$ $w-w_0$. Other known results:

- \bullet If $\Omega_1, \Omega_2 \in \mathsf{QD}(h)$ are star-shaped wrt a common point, then $\Omega_1 = \Omega_2.7$
- If a s.c. bounded domain $\Omega \in \mathsf{QD}(h)$ for some $h(w) = \sum_{j=1}^n$ cj $\frac{c_j}{w-w_j}$ with the $c_j > 0$ and diam $({w_j}) < \sqrt{c_1 + \ldots + c_n}$, then Ω is unique.⁸

 7 Novikoff, P.P.: Sur le problème inverse du potentiel. (1938) $8G$ ustafsson, B., Putinar, M.: Selected topics on quadrature domains. (2007) 9 Aharonov, D., Shapiro, H.S.: Domains on which analytic functions satisfy quadrature identities. (1976)

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

Theory

[The Faber](#page-30-0) Transform

Existence and One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

Question: When is a QD uniquely associated to its quadrature function?

i.e. For what rational functions h is there a unique s.c. domain $\Omega \in \mathbb{Q}(\mathbb{D})$?

Example: The disk is the unique s.c. bounded domain with the mean value property. In terms of QDs, $\mathbb{D}_r(w_0)$ is the unique s.c. domain in QD $\left(\frac{r^2}{w_-}\right)$ $w-w_0$. Other known results:

- \bullet If $\Omega_1, \Omega_2 \in \mathsf{QD}(h)$ are star-shaped wrt a common point, then $\Omega_1 = \Omega_2.7$
- If a s.c. bounded domain $\Omega \in \mathsf{QD}(h)$ for some $h(w) = \sum_{j=1}^n$ cj $\frac{c_j}{w-w_j}$ with the $\vert c_j > 0$ and diam $(\lbrace w_j \rbrace) < \sqrt{c_1 + \ldots + c_n}$, then Ω is unique. 8 √
- If a s.c. bounded domain $\Omega \in \text{QD} \left(\frac{c_1}{w-1} \right)$ $\frac{c_1}{w-w_0}+\frac{c_2}{(w-w_0)}$ $\frac{c_2}{(w-w_0)^2}\Big)$ for some $c_1>0$ and $c_2 \in \mathbb{C}$, then Ω is unique.⁹

Novikoff, P.P.: Sur le problème inverse du potentiel. (1938) Gustafsson, B., Putinar, M.: Selected topics on quadrature domains. (2007) Aharonov, D., Shapiro, H.S.: Domains on which analytic functions satisfy quadrature identities. (1976)

Caltech Logarithmic Potential Theory

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

Let μ be a compactly supported non-negative measure on $\mathbb C$ and $Q: \mathbb{C} \to (-\infty, \infty]$ an admissible¹⁰ external potential. The logarithmic potential and energy associated to μ , Q are respectively

$$
U^{\mu}_Q(w) = \int_{\mathbb{C}} \left(\ln \frac{1}{|w-\xi|} + Q(\xi) + Q(w) \right) d\mu(\xi), \qquad I_Q(\mu) = \int_{\mathbb{C}} U^{\mu}_Q d\mu.
$$

¹⁰Lower semi-continuous and $\lim_{|w| \to \infty} (Q(w) - t \ln |w|) = \infty$, $\forall t > 0$.

Caltech Logarithmic Potential Theory

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

Let μ be a compactly supported non-negative measure on $\mathbb C$ and $Q: \mathbb{C} \to (-\infty, \infty]$ an admissible¹⁰ external potential. The logarithmic potential and energy associated to μ , Q are respectively

$$
U^{\mu}_Q(w)=\int_{\mathbb C} \left(\ln\frac{1}{|w-\xi|}+Q(\xi)+Q(w)\right)d\mu(\xi),\qquad I_Q(\mu)=\int_{\mathbb C} U^{\mu}_Qd\mu.
$$

Frostman: Under these conditions, for each $t > 0$, there exists a unique compactly supported measure μ_t for which

$$
I_Q(\mu_t) = \gamma := \inf_{\mu:\mu(1)=t} I_Q(\mu).
$$

Moreover, $d\mu_t = \frac{\Delta Q}{2\pi}$ $\frac{\Delta Q}{2\pi} \mathbb{1}_{\mathcal{K}_t}$, where $\mathcal{K}_t = \mathsf{supp}(\mu_t)$. μ_t is called the *equilibrium* measure of mass t associated to Q (also called a droplet).

¹⁰Lower semi-continuous and $\lim_{|w| \to \infty} (Q(w) - t \ln |w|) = \infty$, $\forall t > 0$.

Caltech Logarithmic Potential Theory

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

Let μ be a compactly supported non-negative measure on $\mathbb C$ and $Q: \mathbb{C} \to (-\infty, \infty]$ an admissible¹⁰ external potential. The logarithmic potential and energy associated to μ , Q are respectively

$$
U^{\mu}_Q(w)=\int_{\mathbb C} \left(\ln\frac{1}{|w-\xi|}+Q(\xi)+Q(w)\right)d\mu(\xi),\qquad I_Q(\mu)=\int_{\mathbb C} U^{\mu}_Qd\mu.
$$

Frostman: Under these conditions, for each $t > 0$, there exists a unique compactly supported measure μ_t for which

$$
I_Q(\mu_t) = \gamma := \inf_{\mu:\mu(1)=t} I_Q(\mu).
$$

Moreover, $d\mu_t = \frac{\Delta Q}{2\pi}$ $\frac{\Delta Q}{2\pi} \mathbb{1}_{\mathcal{K}_t}$, where $\mathcal{K}_t = \mathsf{supp}(\mu_t)$. μ_t is called the *equilibrium* measure of mass t associated to Q (also called a droplet).

Note: If Q doesn't satisfy the growth condition, one can "localize" by taking $Q_X(w) = Q(w) \mathbb{1}_X + \infty \mathbb{1}_{X^c}$ for an appropriate compact $X \subset \mathbb{C}$. If Q_X is real analytic in a nbhd of K_t , we call K_t a *local droplet.*

¹⁰Lower semi-continuous and $\lim_{|w| \to \infty} (Q(w) - t \ln |w|) = \infty$, $\forall t > 0$.

Caltech Duality of Quadrature Domains and Local Droplets

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

Lemma 2.1

Let K_t be a local droplet corresponding to a "Hele-Shaw" potential, $Q(w) = |w|^2 - 2Re(H(w))$, where $h = H'$ is a rational function. Then K_t^c is a disioint union of QDs, with $h =$ the sum of their quadrature functions.

 11 Seung-Yeop Lee and Nikolai Makarov. "Topology of quadrature domains". (2015)

Caltech Duality of Quadrature Domains and Local Droplets

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

Lemma 2.1

Let K_t be a local droplet corresponding to a "Hele-Shaw" potential, $Q(w) = |w|^2 - 2Re(H(w))$, where $h = H'$ is a rational function. Then K_t^c is a disjoint union of QDs, with $h =$ the sum of their quadrature functions.

Lemma 2.2

Conversely, if the complement of some compact set K_t is a disjoint union of QDs with $h =$ the sum of their quadrature functions, then K_t is a local droplet of a potential of the form

$$
Q(w)=|w|^2-2Re\left(\sum_l 1\!\!1_{K_l}H_l(w)\right),\quad H_l(w)=c_l+\int_{w_l}^w h(\xi)d\xi,
$$

where the $\{K_l\}_l$ are the connected components of K, $w_l \in K_l$, and c_l is a real $constant$ ¹¹

¹¹Seung-Yeop Lee and Nikolai Makarov. "Topology of quadrature domains". (2015)

Caltech Duality of Quadrature Domains and Local Droplets

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

Lemma 2.1

Let K_t be a local droplet corresponding to a "Hele-Shaw" potential, $Q(w) = |w|^2 - 2Re(H(w))$, where $h = H'$ is a rational function. Then K_t^c is a disjoint union of QDs, with $h =$ the sum of their quadrature functions.

Lemma 2.2

Conversely, if the complement of some compact set K_t is a disjoint union of QDs with $h =$ the sum of their quadrature functions, then K_t is a local droplet of a potential of the form

$$
Q(w)=|w|^2-2Re\left(\sum_l \mathbb{1}_{K_l}H_l(w)\right),\quad H_l(w)=c_l+\int_{w_l}^w h(\xi)d\xi,
$$

where the $\{K_l\}_l$ are the connected components of K, $w_l \in K_l$, and c_l is a real $constant$ ¹¹

$$
\text{QD} \xleftarrow{\text{lemmas}} \text{local droplet} \xleftarrow{\text{Frostman}} \text{uniqueness}
$$

¹¹Seung-Yeop Lee and Nikolai Makarov. "Topology of quadrature domains". (2015)

Caltech Example

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) Theory

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point UQDs

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

Recall that the complement of the deltoid,

$$
\Omega = \left\{ z + \frac{1}{2z^2} : |z| > 1 \right\} \in QD\left(\frac{w^2}{2}\right).
$$

Caltech Example

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

Recall that the complement of the deltoid,

$$
\Omega = \left\{ z + \frac{1}{2z^2} : |z| > 1 \right\} \in QD\left(\frac{w^2}{2}\right).
$$

Then by the lemma, the deltoid $K := \Omega^c$ is a local droplet of the potential

$$
Q(w) = |w|^2 - 2\text{Re}\left(\int_0^w \frac{\xi^2}{2} d\xi\right)
$$

$$
= |w|^2 - 2\text{Re}\left(\frac{w^3}{6}\right)
$$

Contour plot for Q

Caltech The Faber Transform

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point UQDs

[Power-Weighted](#page-69-0) Quadrature Domains

[Future work](#page-90-0)

Let
$$
\Omega \subset \widehat{\mathbb{C}}
$$
 be unbounded and simply connected with Riemann map $\varphi : \mathbb{D}^- \to \Omega$,

$$
\varphi(z) = az + f_0 + f_1 z^{-1} + f_2 z^{-2} + \cdots, \qquad a = \text{rad}_{\infty}(\Omega) > 0
$$

 $^{12}\psi:=\varphi^{-1}$

Caltech The Faber Transform

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0)

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

Let $\Omega \subset \widehat{\mathbb{C}}$ be unbounded and simply connected with Riemann map $\varphi: \mathbb{D}^-\to \Omega$, $\varphi(z)=\textsf{a} z+\textsf{f}_0+\textsf{f}_1 z^{-1}+\textsf{f}_2 z^{-2}+\cdots, \qquad \textsf{a}=\textsf{rad}_\infty(\Omega)>0$ The associated exterior Faber transform Φ_{φ} is a linear iso $\mathcal{A}(\mathbb{D}) \to \mathcal{A}(\Omega^{-})$, ¹²

> $\Phi_{\varphi}(f)(w) = \frac{1}{2\pi i}$ \overline{a} ∂D[−] $f(z)\varphi'(z)$ $\frac{f(z)\varphi'(z)}{\varphi(z)-w}dz=\frac{1}{2\pi}$ 2πi \overline{a} ∂Ω $f \circ \psi(\xi)$ $\frac{\varphi(s)}{\xi - w} d\xi$

$$
^{12}\psi:=\varphi^{-1}
$$

The Faber Transform **Caltech**

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0)

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

Let $\Omega \subset \widehat{\mathbb{C}}$ be unbounded and simply connected with Riemann map $\varphi: \mathbb{D}^-\to \Omega$, $\varphi(z)=\textsf{a} z+\textsf{f}_0+\textsf{f}_1 z^{-1}+\textsf{f}_2 z^{-2}+\cdots, \qquad \textsf{a}=\textsf{rad}_\infty(\Omega)>0$

The associated exterior Faber transform Φ_{ω} is a linear iso $\mathcal{A}(\mathbb{D}) \to \mathcal{A}(\Omega^{-1})$.¹²

$$
\Phi_{\varphi}(f)(w) = \frac{1}{2\pi i} \oint_{\partial D^{-}} \frac{f(z)\varphi'(z)}{\varphi(z) - w} dz = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{f \circ \psi(\xi)}{\xi - w} d\xi
$$

 $2^{n}T$ J _{∂ \mathbb{D} $\vdash \varphi$ (2) $\vdash w$ $2^{n}T$ J _{∂ Ω} $\varsigma = w$
Note: the Faber transform preserves polynomials and rational functions, e.g.}

$$
\Phi_{\varphi}\left(\frac{1}{z-z_0}\right)(w) = \frac{\varphi'(z_0)}{w-\varphi(z_0)},
$$

\n
$$
\Phi_{\varphi}\left(z^n\right)(w) =: F_n(w) \text{ (nth Faber polynomial)}
$$

$$
^{12}\psi:=\varphi^{-1}
$$

Caltech The Faber Transform

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0)

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

Let $\Omega \subset \widehat{\mathbb{C}}$ be unbounded and simply connected with Riemann map $\varphi: \mathbb{D}^-\to \Omega$, $\varphi(z)=\textsf{a} z+\textsf{f}_0+\textsf{f}_1 z^{-1}+\textsf{f}_2 z^{-2}+\cdots, \qquad \textsf{a}=\textsf{rad}_\infty(\Omega)>0$

The associated exterior Faber transform Φ_{ω} is a linear iso $\mathcal{A}(\mathbb{D}) \to \mathcal{A}(\Omega^{-1})$.¹²

$$
\Phi_{\varphi}(f)(w) = \frac{1}{2\pi i} \oint_{\partial D^{-}} \frac{f(z)\varphi'(z)}{\varphi(z) - w} dz = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{f \circ \psi(\xi)}{\xi - w} d\xi
$$

Note: the Faber transform preserves polynomials and rational functions, e.g.

$$
\Phi_{\varphi}\left(\frac{1}{z-z_0}\right)(w) = \frac{\varphi'(z_0)}{w-\varphi(z_0)},
$$

\n
$$
\Phi_{\varphi}\left(z^n\right)(w) =: F_n(w) \text{ (nth Faber polynomial)}
$$

The interior Faber transform, defined for bounded s.c. domains is defined similarly, and is a map $\overline{\Phi}_{\varphi} : \mathcal{A}_0(\mathbb{D}^-) \to \mathcal{A}_0(\Omega^-).$

 $^{12}\psi:=\varphi^{-1}$

The Faber Transform Method **Caltech**

If $\Omega \in \mathsf{QD}(h)$ is bounded s.c, with Riemann map φ , then φ is rational and¹³ $h = \Phi_{\varphi}\left(\varphi^{\#}\right)$ Chang & Makarov (2013)

[Quadrature](#page-2-0) Domains

[Uniqueness of](#page-0-0) GQDs Andrew Graven

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

 $^{13}\varphi^\#(z):=\varphi(\overline{z^{-1}})$ ¹⁴ related formula in Ameur, Helmer & Tellander (2020)

Caltech The Faber Transform Method

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

If $\Omega \in \mathbb{Q}D(h)$ is bounded s.c, with Riemann map φ , then φ is rational and¹³ $h = \Phi_{\varphi}\left(\varphi^{\#}\right)$ Chang & Makarov (2013)

Both sides of equation are rational functions, so we obtain a finite-dimensional system of algebraic equations relating the coefficients of φ and those of $h.^{14}$

 $^{13}\varphi^\#(z):=\varphi(\overline{z^{-1}})$ ¹⁴ related formula in Ameur, Helmer & Tellander (2020)
Caltech The Faber Transform Method

If $\Omega \in \mathbb{Q}D(h)$ is bounded s.c, with Riemann map φ , then φ is rational and¹³ $h = \Phi_{\varphi}\left(\varphi^{\#}\right)$ Chang & Makarov (2013)

Both sides of equation are rational functions, so we obtain a finite-dimensional system of algebraic equations relating the coefficients of φ and those of $h.^{14}$

We've shown that if $\Omega \in \mathsf{QD}(h)$ is unbounded and s.c, then the associated Riemann map φ is rational and satisfies

$$
h = \Phi_{\varphi} \left(\varphi^{\#} \right),
$$

$$
\varphi(z) = az + \Phi_{\varphi}^{-1} (h)^{\#} (z).
$$

 $^{13}\varphi^\#(z):=\varphi(\overline{z^{-1}})$ ¹⁴ related formula in Ameur, Helmer & Tellander (2020)

[Uniqueness of](#page-0-0) GQDs Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0)

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point UQDs

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

While the uniqueness of one point bounded QDs is well understood, the situation for general one point *unbounded* QDs has received little attention in the literature.

¹⁵The $c = 0$ and $w_0 = 0$ cases are trivial.

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point UQDs

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

While the uniqueness of one point bounded QDs is well understood, the situation for general one point *unbounded* QDs has received little attention in the literature. More specifically:

■ For what values of $c, w_0 \in \mathbb{C} \setminus \{0\}$ does there exist a simply connected unbounded domain $\Omega \in \mathsf{QD}\left(\frac{c}{w-w_0}\right)$ $\big)$?¹⁵

¹⁵The $c = 0$ and $w_0 = 0$ cases are trivial. One point UQDs for $w_0 = 2$, $c = 1$

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point UQDs

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

While the uniqueness of one point bounded QDs is well understood, the situation for general one point *unbounded* QDs has received little attention in the literature. More specifically:

■ For what values of $c, w_0 \in \mathbb{C} \setminus \{0\}$ does there exist a simply connected unbounded domain $\Omega \in \mathsf{QD}\left(\frac{c}{w-w_0}\right)$ $\big)$?¹⁵

2 Are these domains unique when they exist?

¹⁵The $c = 0$ and $w_0 = 0$ cases are trivial. One point UQDs for $w_0 = 2$, $c = 1$

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0)

Theory

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point UQDs

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

While the uniqueness of one point bounded QDs is well understood, the situation for general one point *unbounded* QDs has received little attention in the literature. More specifically:

- **■** For what values of $c, w_0 \in \mathbb{C} \setminus \{0\}$ does there exist a simply connected unbounded domain $\Omega \in \mathsf{QD}\left(\frac{c}{w-w_0}\right)$ $\big)$?¹⁵
- 2 Are these domains unique when they exist?

By change of variables,

$$
\Omega \in \text{QD}\left(\frac{c}{w - w_0}\right) \quad \Longleftrightarrow \quad \frac{2}{w_0} \Omega \in \text{QD}\left(\frac{\frac{4c}{|w_0|^2}}{w - 2}\right)
$$

so we can wlog assume $w_0 = 2$.

¹⁵The $c = 0$ and $w_0 = 0$ cases are trivial. One point UQDs for $w_0 = 2$, $c = 1$

[Uniqueness of](#page-0-0) GQDs

Theorem 4.1

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point UQDs

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

If $c \in \mathbb{C} \setminus \mathbb{R}$ and $w_0 \neq 0$, then there exists a simply connected domain $\Omega \in QD \Big(\frac{c}{\mathsf{w}-\mathsf{w}_0}$ $\Big)$ if and only if $|w_0|^2+2(R{\sf e}(c)-|c|)>0.$ In this case, Ω is the unique such domain of its conformal radius.

[Uniqueness of](#page-0-0) GQDs

Theorem 4.1

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point UQDs

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

If $c \in \mathbb{C} \setminus \mathbb{R}$ and $w_0 \neq 0$, then there exists a simply connected domain $\Omega \in QD \Big(\frac{c}{\mathsf{w}-\mathsf{w}_0}$ $\Big)$ if and only if $|w_0|^2+2(R{\sf e}(c)-|c|)>0.$ In this case, Ω is the unique such domain of its conformal radius.

Set $A(\Omega_t) = t$. Then for each such w_0 and c,

 \bullet There exists $t_*>0$ such that $\nexists \Omega_t\in \mathsf{QD}\left(\frac{c}{w-w_0}\right)$ $\Big)$ for any $t > t_*$,

[Uniqueness of](#page-0-0) GQDs

Theorem 4.1

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point UQDs

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

If $c \in \mathbb{C} \setminus \mathbb{R}$ and $w_0 \neq 0$, then there exists a simply connected domain $\Omega \in QD \Big(\frac{c}{\mathsf{w}-\mathsf{w}_0}$ $\Big)$ if and only if $|w_0|^2+2(R{\sf e}(c)-|c|)>0.$ In this case, Ω is the unique such domain of its conformal radius.

Set $A(\Omega_t) = t$. Then for each such w_0 and c,

- \bullet There exists $t_*>0$ such that $\nexists \Omega_t\in \mathsf{QD}\left(\frac{c}{w-w_0}\right)$ $\Big)$ for any $t > t_*$,
- There is a unique monotone family of such domains $\{\Omega_t\}_{0 < t \leq t_*},$

[Uniqueness of](#page-0-0) GQDs

Theorem 4.1

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point UQDs

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

If $c \in \mathbb{C} \setminus \mathbb{R}$ and $w_0 \neq 0$, then there exists a simply connected domain $\Omega \in QD \Big(\frac{c}{\mathsf{w}-\mathsf{w}_0}$ $\Big)$ if and only if $|w_0|^2+2(R{\sf e}(c)-|c|)>0.$ In this case, Ω is the unique such domain of its conformal radius.

Set $A(\Omega_t) = t$. Then for each such w_0 and c,

- \bullet There exists $t_*>0$ such that $\nexists \Omega_t\in \mathsf{QD}\left(\frac{c}{w-w_0}\right)$ $\Big)$ for any $t > t_*$,
- There is a unique monotone family of such domains $\{\Omega_t\}_{0 < t \leq t_*},$
- $\partial \Omega_t$ develops a $(3, 2)$ −cusp as $t \to t_*$.

Outline of Proof Caltech

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) **Transform**

Existence and [Uniqueness of](#page-37-0) One Point UQDs

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

$$
\Omega_t \in \mathrm{QD}(h), \qquad h(w) = \frac{c}{w-2}
$$

Key tool: Correspondence between UQDs and local droplets. Can consider the associated potential:

$$
Q(w) = |w|^2 - 2\text{Re}(H(w)) \quad \left(H(w) = c \ln(w - 2), \quad H'(w) = h(w) = \frac{c}{w - 2} \right)
$$

.

Outline of Proof **Caltech**

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point UQDs

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

$$
\Omega_t \in \mathrm{QD}(h), \qquad h(w) = \frac{c}{w-2}
$$

Key tool: Correspondence between UQDs and local droplets. Can consider the associated potential:

$$
Q(w) = |w|^2 - 2\text{Re}(H(w)) \quad \left(H(w) = c \ln(w - 2), \quad H'(w) = h(w) = \frac{c}{w - 2} \right)
$$

.

1 Existence:

Q has a local min \longrightarrow local droplet K_t exists \longleftrightarrow $\Omega_t := K_t^c \in \mathsf{QD}(h)$

Outline of Proof **Caltech**

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point UQDs

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

$$
\Omega_t \in \mathrm{QD}(h), \qquad h(w) = \frac{c}{w-2}
$$

Key tool: Correspondence between UQDs and local droplets. Can consider the associated potential:

$$
Q(w) = |w|^2 - 2\text{Re}(H(w)) \quad \left(H(w) = c \ln(w - 2), \quad H'(w) = h(w) = \frac{c}{w - 2} \right)
$$

.

1 Existence:

Q has a local min \longrightarrow local droplet K_t exists \longleftrightarrow $\Omega_t := K_t^c \in \mathsf{QD}(h)$

2 Uniqueness:

 $UQD \longrightarrow$ local droplet; obtain uniqueness from Frostman's theorem.

Caltech Outline of Proof

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point UQDs

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

$$
\Omega_t \in \mathrm{QD}(h), \qquad h(w) = \frac{c}{w-2}
$$

Key tool: Correspondence between UQDs and local droplets. Can consider the associated potential:

$$
Q(w) = |w|^2 - 2\text{Re}(H(w)) \quad \left(H(w) = c \ln(w - 2), \quad H'(w) = h(w) = \frac{c}{w - 2} \right)
$$

.

1 Existence:

Q has a local min \longrightarrow local droplet K_t exists \longleftrightarrow $\Omega_t := K_t^c \in \mathsf{QD}(h)$

2 Uniqueness:

 $UQD \longrightarrow$ local droplet; obtain uniqueness from Frostman's theorem.

³ Cusp development: Use Faber transform to obtain representation of Riemann map $\varphi_t : \mathbb{D}^+ \to \Omega_t$, then use representation of Riemann map to demonstrate that $\varphi_t'(z)=0$ for some $z\in\partial\mathbb{D}$ and $t>0.$

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point UQDs

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

 \bullet Suppose that $c\in\mathbb{C}\setminus\mathbb{R}$ is such that $Q(w)=|w|^2-2\mathsf{Re}(c\ln(w-2))$ has a local minimum $z_0 \neq 2$.

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point UQDs

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

 \bullet Suppose that $c\in\mathbb{C}\setminus\mathbb{R}$ is such that $Q(w)=|w|^2-2\mathsf{Re}(c\ln(w-2))$ has a local minimum $z_0 \neq 2$.

2 In this case, localize to an open nbhd of z_0 and apply Frostman's theorem to obtain the existence of a local droplet $K_t \ni z_0$.

singular potential localized potential modified potential

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point UQDs

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

 \bullet Suppose that $c\in\mathbb{C}\setminus\mathbb{R}$ is such that $Q(w)=|w|^2-2\mathsf{Re}(c\ln(w-2))$ has a local minimum $z_0 \neq 2$.

2 In this case, localize to an open nbhd of z_0 and apply Frostman's theorem to obtain the existence of a local droplet $K_t \ni z_0$.

singular potential localized potential modified potential 3 By the correspondence between UQDs and local droplets, we find that $\Omega_t := \mathcal{K}^c_t \in \mathsf{QD}\left(\frac{c}{w-2}\right).$

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point UQDs

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

 \bullet Suppose that $c\in\mathbb{C}\setminus\mathbb{R}$ is such that $Q(w)=|w|^2-2\mathsf{Re}(c\ln(w-2))$ has a local minimum $z_0 \neq 2$.

2 In this case, localize to an open nbhd of z_0 and apply Frostman's theorem to obtain the existence of a local droplet $K_t \ni z_0$.

singular potential localized potential modified potential 3 By the correspondence between UQDs and local droplets, we find that $\Omega_t := \mathcal{K}^c_t \in \mathsf{QD}\left(\frac{c}{w-2}\right).$

 4 So if Q has a local minimum $z_0\neq 2$, then $\exists \Omega_t\in \mathsf{QD}\left(\frac{c}{w-2}\right)$ for some $t>0.$

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point UQDs

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

 \bullet Suppose that $c\in\mathbb{C}\setminus\mathbb{R}$ is such that $Q(w)=|w|^2-2\mathsf{Re}(c\ln(w-2))$ has a local minimum $z_0 \neq 2$.

2 In this case, localize to an open nbhd of z_0 and apply Frostman's theorem to obtain the existence of a local droplet $K_t \ni z_0$.

singular potential localized potential modified potential 3 By the correspondence between UQDs and local droplets, we find that $\Omega_t := \mathcal{K}^c_t \in \mathsf{QD}\left(\frac{c}{w-2}\right).$

 4 So if Q has a local minimum $z_0\neq 2$, then $\exists \Omega_t\in \mathsf{QD}\left(\frac{c}{w-2}\right)$ for some $t>0.$ Calculus exercise: Show that $Q(w) = |w|^2 - 2\text{Re}(c\ln(w-2))$ has a local minimum $z_0 \neq 2$ iff $2 + \text{Re}(c) - |c| > 0$ and the minimum is unique when it exists.

[Uniqueness of](#page-0-0) GQDs

Let
$$
\Omega_t
$$
, $\Omega'_t \in \text{QD}\left(\frac{c}{w-2}\right)$ with $0 < t = \mu(\Omega_t) = \mu(\Omega'_t)$.

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point UQDs

[Power-Weighted](#page-69-0) Quadrature Domains

[Future work](#page-90-0)

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point UQDs

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

 \bullet By the correspondence, the complements of both of these domains, K_t and K'_t , are local droplets of $Q(w) = |w|^2 - 2\text{Re}(c\ln(w-2)).$

Let $\Omega_t, \Omega'_t \in \mathsf{QD}\left(\frac{c}{w-2}\right)$ with $0 < t = \mu(\Omega_t) = \mu(\Omega'_t)$.

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0)

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point UQDs

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

 \bullet By the correspondence, the complements of both of these domains, K_t and K'_t , are local droplets of $Q(w) = |w|^2 - 2\text{Re}(c\ln(w-2)).$

Let $\Omega_t, \Omega'_t \in \mathsf{QD}\left(\frac{c}{w-2}\right)$ with $0 < t = \mu(\Omega_t) = \mu(\Omega'_t)$.

 Ω Fact: If K is a local droplet of a potential Q, then there exists a monotone family of such local droplets $\{\mathcal{K}_t\}_{0 < t \leq t_*}$ $(t = \mu(\mathcal{K}_t))$ for which $\mathcal{K}_{t_*} = \mathcal{K}.$ Moreover, $\cap_{0 < t \leq t_*} K_t$ is a non-empty subset of the local minima of Q .

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point UQDs

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

\bullet By the correspondence, the complements of both of these domains, K_t and K'_t , are local droplets of $Q(w) = |w|^2 - 2\text{Re}(c\ln(w-2)).$

Let $\Omega_t, \Omega'_t \in \mathsf{QD}\left(\frac{c}{w-2}\right)$ with $0 < t = \mu(\Omega_t) = \mu(\Omega'_t)$.

 Ω Fact: If K is a local droplet of a potential Q, then there exists a monotone family of such local droplets $\{\mathcal{K}_t\}_{0 < t \leq t_*}$ $(t = \mu(\mathcal{K}_t))$ for which $\mathcal{K}_{t_*} = \mathcal{K}.$ Moreover, $\cap_{0 < t \leq t_*} K_t$ is a non-empty subset of the local minima of Q .

 $\bf 3$ Thus $Q(w)=|w|^2-2{\rm Re}(c\ln(w-2))$ must have at least one local minimum $z₀$. But we also know that such a local minimum must be unique when it exists. Therefore $z_0 \in K_t \cap K'_t$.

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point UQDs

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

 \bullet By the correspondence, the complements of both of these domains, K_t and K'_t , are local droplets of $Q(w) = |w|^2 - 2\text{Re}(c\ln(w-2)).$

Let $\Omega_t, \Omega'_t \in \mathsf{QD}\left(\frac{c}{w-2}\right)$ with $0 < t = \mu(\Omega_t) = \mu(\Omega'_t)$.

- Ω Fact: If K is a local droplet of a potential Q, then there exists a monotone family of such local droplets $\{\mathcal{K}_t\}_{0 < t \leq t_*}$ $(t = \mu(\mathcal{K}_t))$ for which $\mathcal{K}_{t_*} = \mathcal{K}.$ Moreover, $\cap_{0 < t \leq t_*} K_t$ is a non-empty subset of the local minima of Q .
	- $\bf 3$ Thus $Q(w)=|w|^2-2{\rm Re}(c\ln(w-2))$ must have at least one local minimum $z₀$. But we also know that such a local minimum must be unique when it exists. Therefore $z_0 \in K_t \cap K'_t$.
- $\bullet\,$ Finally, by localizing to an open nbhd of $\mathsf{K}_t\cup\mathsf{K}_t'$ and applying Frostman's theorem, we find that $K_t = K'_t$, so $\Omega_t = \Omega'_t$.

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point UQDs

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

Recall that if $\Omega \in \mathbb{Q}D(h)$ is s.c. and unbounded then there exists $a > 0$ such that $\varphi(z)=$ az + $\Phi_{\varphi}^{-1}\left(h\right) ^{\#}\left(z\right)$.

$$
\varphi(z) = az + \Phi_{\varphi}^{-1} \left(\frac{c}{w-2} \right)^{\#} (z)
$$

(where
$$
\psi := \varphi^{-1}
$$
)

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point UQDs

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

Recall that if $\Omega \in \mathbb{Q}D(h)$ is s.c. and unbounded then there exists $a > 0$ such that $\varphi(z)=$ az + $\Phi_{\varphi}^{-1}\left(h\right) ^{\#}\left(z\right)$.

$$
\varphi(z) = az + \Phi_{\varphi}^{-1} \left(\frac{c}{w-2} \right)^{\#} (z) = az + \left(\frac{c\psi'(2)}{z - \psi(2)} \right)^{\#}
$$

$$
(\text{where }\psi:=\varphi^{-1})
$$

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point UQDs

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

Recall that if $\Omega \in \mathbb{Q}D(h)$ is s.c. and unbounded then there exists $a > 0$ such that $\varphi(z)=$ az + $\Phi_{\varphi}^{-1}\left(h\right) ^{\#}\left(z\right)$.

$$
\varphi(z) = az + \Phi_{\varphi}^{-1}\left(\frac{c}{w-2}\right)^{\#}(z) = az + \left(\frac{c\psi'(2)}{z-\psi(2)}\right)^{\#} = az + \overline{c}\frac{\overline{\psi'(2)}}{z^{-1}-\overline{\psi(2)}}
$$

$$
(\text{where }\psi:=\varphi^{-1})
$$

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point UQDs

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

Recall that if $\Omega \in \mathbb{Q}D(h)$ is s.c. and unbounded then there exists $a > 0$ such that $\varphi(z)=$ az + $\Phi_{\varphi}^{-1}\left(h\right) ^{\#}\left(z\right)$.

$$
\varphi(z) = az + \Phi_{\varphi}^{-1}\left(\frac{c}{w-2}\right)^{\#}(z) = az + \left(\frac{c\psi'(2)}{z-\psi(2)}\right)^{\#} = az + \overline{c}\frac{\overline{\psi'(2)}}{z^{-1}-\overline{\psi(2)}}
$$

(where
$$
\psi := \varphi^{-1}
$$
)
\nSetting $z_0 = \psi(2)$ and noticing that $\psi'(2) = \frac{1}{\varphi'(z_0)}$, this may be rewritten as
\n
$$
\varphi(z) = az \frac{z - z_0 + \frac{2}{a} \frac{|z_0|^2 - 1}{|z_0|^2}}{z - \overline{z_0}^{-1}}
$$

Caltech Cusp Formation

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point UQDs

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

Recall that if $\Omega \in \mathbb{Q}D(h)$ is s.c. and unbounded then there exists $a > 0$ such that $\varphi(z)=$ az + $\Phi_{\varphi}^{-1}\left(h\right) ^{\#}\left(z\right)$.

Thus when $h(w) = \frac{c}{w-2}$ there exists $a > 0$ such that

$$
\varphi(z) = az + \Phi_{\varphi}^{-1} \left(\frac{c}{w-2} \right)^{\#} (z) = az + \left(\frac{c\psi'(2)}{z - \psi(2)} \right)^{\#} = az + \overline{c} \frac{\overline{\psi'(2)}}{z^{-1} - \overline{\psi(2)}}
$$

(where $\psi:=\varphi^{-1}$)

Setting $z_0=\psi(2)$ and noticing that $\psi'(2)=\frac{1}{\varphi'(z_0)}$, this may be rewritten as

$$
\varphi(z) = az \frac{z - z_0 + \frac{2}{a} \frac{|z_0|^2 - 1}{|z_0|^2}}{z - \overline{z_0}^{-1}}
$$

Applying the additional Faber transform relation, $h=\Phi_\varphi\left(\varphi^\# \right)$, we obtain

$$
\frac{c}{w-2} = h(w) = \Phi_{\varphi}\left(\varphi^{\#}\right)(w) = \frac{1}{w-2} \frac{(az_0|z_0|^2 - 2)(a\overline{z_0} - 2)}{|z_0|^2}.
$$

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point UQDs

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

$$
c=(az_0|z_0|^2-2)(a\overline{z_0}-2)|z_0|^{-2}, \qquad \overline{c}=(a\overline{z_0}|z_0|^2-2)(az_0-2)|z_0|^{-2}
$$

Considering the obtained equation along with its complex conjugate and eliminating $\overline{z_0}$, we obtain a sextic in z_0 , $0 = z_0^6 + z_0^5 \left(\frac{a}{2}\right)$ $\left(\frac{a}{2}+O\left(1\right)\right)+z_{0}^{4}O\left(1\right)+z_{0}^{3}O\left(a^{-1}\right)+z_{0}^{2}O\left(1\right)+z_{0}O\left(a^{-1}\right)+4a^{-2}.$

¹⁶Y. Ameur, N-G. Kang, N. Makarov., "Scaling limits of random normal matrix processes at singular boundary points". (2020)

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point UQDs

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

$$
c=(az_0|z_0|^2-2)(a\overline{z_0}-2)|z_0|^{-2}, \qquad \overline{c}=(a\overline{z_0}|z_0|^2-2)(az_0-2)|z_0|^{-2}
$$

Considering the obtained equation along with its complex conjugate and eliminating $\overline{z_0}$, we obtain a sextic in z_0 , $0 = z_0^6 + z_0^5 \left(\frac{a}{2}\right)$ $\left(\frac{a}{2}+O\left(1\right)\right)+z_{0}^{4}O\left(1\right)+z_{0}^{3}O\left(a^{-1}\right)+z_{0}^{2}O\left(1\right)+z_{0}O\left(a^{-1}\right)+4a^{-2}.$

Asymptotic analysis for $a \to \infty$ tells us that either $z_0 \xrightarrow{a \to \infty} 0$ or $z_0 = \frac{a}{2} + O(1)$.

¹⁶Y. Ameur, N-G. Kang, N. Makarov., "Scaling limits of random normal matrix processes at singular boundary points". (2020)

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

Theory

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point UQDs

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

$$
c = (az_0|z_0|^2 - 2)(a\overline{z_0} - 2)|z_0|^{-2}, \qquad \overline{c} = (a\overline{z_0}|z_0|^2 - 2)(az_0 - 2)|z_0|^{-2}
$$

Considering the obtained equation along with its complex conjugate and eliminating $\overline{z_0}$, we obtain a sextic in z_0 , $0 = z_0^6 + z_0^5 \left(\frac{a}{2}\right)$ $\left(\frac{a}{2}+O\left(1\right)\right)+z_{0}^{4}O\left(1\right)+z_{0}^{3}O\left(a^{-1}\right)+z_{0}^{2}O\left(1\right)+z_{0}O\left(a^{-1}\right)+4a^{-2}.$ Asymptotic analysis for $a \to \infty$ tells us that either $z_0 \xrightarrow{a \to \infty} 0$ or $z_0 = \frac{a}{2} + O(1)$. The former is impossible because $|z_0| > 1$, and the latter is because then $c = \frac{(az_0|z_0|^2-2)(a\overline{z_0}-2)}{|z_0|^2}$ $\frac{2(2a)^{2}}{|z_{0}|^{2}} =$ $\left(\frac{a^4}{8} + O(a^3)\right) \left(\frac{a^2}{2} + O(a)\right)$ $\frac{a^2}{4} + O(a)$ $=\frac{a^4}{4}$ $\frac{a}{4} + O(a^3)$

¹⁶Y. Ameur, N-G. Kang, N. Makarov., "Scaling limits of random normal matrix processes at singular boundary points". (2020)

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point UQDs

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

$$
c=(az_0|z_0|^2-2)(a\overline{z_0}-2)|z_0|^{-2}, \qquad \overline{c}=(a\overline{z_0}|z_0|^2-2)(az_0-2)|z_0|^{-2}
$$

Considering the obtained equation along with its complex conjugate and eliminating $\overline{z_0}$, we obtain a sextic in z_0 , $0 = z_0^6 + z_0^5 \left(\frac{a}{2}\right)$ $\left(\frac{a}{2}+O\left(1\right)\right)+z_{0}^{4}O\left(1\right)+z_{0}^{3}O\left(a^{-1}\right)+z_{0}^{2}O\left(1\right)+z_{0}O\left(a^{-1}\right)+4a^{-2}.$ Asymptotic analysis for $a \to \infty$ tells us that either $z_0 \xrightarrow{a \to \infty} 0$ or $z_0 = \frac{a}{2} + O(1)$. The former is impossible because $|z_0| > 1$, and the latter is because then

 $c = \frac{(az_0|z_0|^2-2)(a\overline{z_0}-2)}{|z_0|^2}$ $\frac{2(2a)^{2}}{|z_{0}|^{2}} =$ $\left(\frac{a^4}{8} + O(a^3)\right) \left(\frac{a^2}{2} + O(a)\right)$ $rac{a^2}{4} + O(a)$ $=\frac{a^4}{4}$ $\frac{a}{4} + O(a^3)$ Thus $\frac{4}{3}\Omega_t$ for t sufficiently large, so there exists a maximal t. By Sakai's theorem 16 , $\partial\Omega_{t_*}$ must contain a $(\nu,2)-$ cusp, where $\nu\in 3+4\mathbb{N}_0.$ That $\nu=3$ follows from analysis of $\varphi_{t_*}.$

¹⁶Y. Ameur, N-G. Kang, N. Makarov., "Scaling limits of random normal matrix processes at singular boundary points". (2020)

Caltech Some Examples

Caltech Power-Weighted Quadrature Domains

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0)

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

Definition 5.1 (Power-Weighted Quadrature Domain)

We call a bounded (resp. unbounded) domain $\Omega \subset \widehat{\mathbb{C}}$ a power-weighted QD (PQD) of order $n \in \mathbb{Z}_+$ if $\exists h \in \text{Rat}_0(\Omega)$ (resp. $\text{Rat}(\Omega)$) s.t

$$
\int_{\Omega} f d\mu = \frac{1}{2\pi i} \oint_{\partial \Omega} f(w) h(w) dw, \qquad (d\mu(w) = n^2 |w|^{2(n-1)} dA(w))
$$

 $\forall f \in \mathcal{A}(\Omega)$ (resp. $A_0(\Omega)$). Denoted by $\Omega \in \mathbb{QD}_n(h)$.

Caltech Power-Weighted Quadrature Domains

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0)

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

Definition 5.1 (Power-Weighted Quadrature Domain)

We call a bounded (resp. unbounded) domain $\Omega \subset \widehat{\mathbb{C}}$ a power-weighted QD (PQD) of order $n \in \mathbb{Z}_+$ if $\exists h \in \text{Rat}_0(\Omega)$ (resp. $\text{Rat}(\Omega)$) s.t

$$
\int_{\Omega} f d\mu = \frac{1}{2\pi i} \oint_{\partial \Omega} f(w) h(w) dw, \qquad (d\mu(w) = n^2 |w|^{2(n-1)} dA(w))
$$

 $\forall f \in \mathcal{A}(\Omega)$ (resp. $A_0(\Omega)$). Denoted by $\Omega \in \mathbb{QD}_n(h)$.

Caltech Power-Weighted Quadrature Domains

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0)

Theory

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

Definition 5.1 (Power-Weighted Quadrature Domain)

We call a bounded (resp. unbounded) domain $\Omega \subset \widehat{\mathbb{C}}$ a power-weighted QD (PQD) of order $n \in \mathbb{Z}_+$ if $\exists h \in \text{Rat}_0(\Omega)$ (resp. $\text{Rat}(\Omega)$) s.t

$$
\int_{\Omega} f d\mu = \frac{1}{2\pi i} \oint_{\partial\Omega} f(w) h(w) dw, \qquad (d\mu(w) = n^2 |w|^{2(n-1)} dA(w))
$$

\n
$$
\forall f \in \mathcal{A}(\Omega) \text{ (resp. } A_0(\Omega) \text{). Denoted by } \Omega \in \mathcal{QD}_n(h).
$$

When $n = 1$, we recover classical QDs. On the other hand, when $n > 1$ then the metric is singular at 0. This results in interesting behaviour.
Caltech Power-Weighted Quadrature Domains

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0)

Theory

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

Definition 5.1 (Power-Weighted Quadrature Domain)

We call a bounded (resp. unbounded) domain $\Omega \subset \widehat{\mathbb{C}}$ a power-weighted QD (PQD) of order $n \in \mathbb{Z}_+$ if $\exists h \in \text{Rat}_0(\Omega)$ (resp. $\text{Rat}(\Omega)$) s.t

$$
\int_{\Omega} f d\mu = \frac{1}{2\pi i} \oint_{\partial \Omega} f(w) h(w) dw, \qquad (d\mu(w) = n^2 |w|^{2(n-1)} dA(w))
$$

\n
$$
\forall f \in \mathcal{A}(\Omega) \text{ (resp. } A_0(\Omega)). \text{ Denoted by } \Omega \in \mathcal{QD}_n(h).
$$

When $n = 1$, we recover classical QDs. On the other hand, when $n > 1$ then the metric is singular at 0. This results in interesting behaviour.

For example when $\Omega \in \mathsf{QD}_2\left(\frac{10}{w-2}\right)$, a corner appears when $\partial\Omega$ intersects the origin.

Power-Weighted Faber Transform Identity **Caltech**

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

The Faber transform formulae for classical quadrature domains generalize nicely to weighted QDs.

Caltech Power-Weighted Faber Transform Identity

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) **Transform**

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

The Faber transform formulae for classical quadrature domains generalize nicely to weighted QDs.

If $n \in \mathbb{Z}_+$ and $\Omega \in \mathbb{Q}D_n(h)$ is bounded and s.c, then

$$
\varphi^{n}(z)=\varphi^{n}(0)+\Phi_{\varphi}^{-1}\left(\frac{h(w)+G(w)}{nw^{n-1}}\right)^{\#}(z),
$$

for some $G \in \mathcal{A}(\Omega)$.

Caltech Power-Weighted Faber Transform Identity

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

The Faber transform formulae for classical quadrature domains generalize nicely to weighted QDs.

If $n \in \mathbb{Z}_+$ and $\Omega \in \mathbb{Q}D_n(h)$ is bounded and s.c, then

$$
\varphi^{n}(z)=\varphi^{n}(0)+\Phi_{\varphi}^{-1}\left(\frac{h(w)+G(w)}{nw^{n-1}}\right)^{\#}(z),
$$

for some $G \in \mathcal{A}(\Omega)$.

Similarly, if $\Omega \in \mathsf{QD}_n(h)$ is unbounded, then

$$
\varphi^{n}(z) = W_{n}(z) - W_{n}(0) + \Phi_{\varphi}^{-1}\left(\frac{h + G(w)}{R'}\right)^{\#}(z)
$$

for some $G\in\mathcal{A}_0(\Omega)$, where $W_n:=\Phi_{\varphi}^{-1}(z^n)$ is the nth "inverse Faber polynomial".

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

If $0 \notin \Omega \in \mathsf{QD}_n\left(\frac{c}{w-w_0}\right)$ $\Big)$ is bounded and s.c. with, $c > 0$, $w_0 \in \mathbb{C} \setminus \{0\}$ with Riemann map φ (wlog taking $\varphi(0)=$ w_0 , $\varphi'(0)>0)$, then

¹⁷Similar result in [Dragnev, Legg & Saff (2022)]

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

If $0 \notin \Omega \in \mathsf{QD}_n\left(\frac{c}{w-w_0}\right)$ $\Big)$ is bounded and s.c. with, $c > 0$, $w_0 \in \mathbb{C} \setminus \{0\}$ with Riemann map φ (wlog taking $\varphi(0)=$ w_0 , $\varphi'(0)>0)$, then

$$
\varphi^{n}(z)=\varphi^{n}(0)+\Phi_{\varphi}^{-1}\left(\frac{c}{nw^{n-1}(w-w_{0})}\right)^{\#}(z)
$$

¹⁷Similar result in [Dragnev, Legg & Saff (2022)]

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

If $0 \notin \Omega \in \mathsf{QD}_n\left(\frac{c}{w-w_0}\right)$ $\Big)$ is bounded and s.c. with, $c > 0$, $w_0 \in \mathbb{C} \setminus \{0\}$ with Riemann map φ (wlog taking $\varphi(0)=$ w_0 , $\varphi'(0)>0)$, then

$$
(z) = \varphi^{n}(0) + \Phi_{\varphi}^{-1} \left(\frac{c}{n w^{n-1} (w - w_{0})} \right)^{\#} (z)
$$

= $w_{0}^{n} + \frac{c}{n \overline{w_{0}}^{n-1}} \Phi_{\varphi}^{-1} \left(\frac{1}{w - w_{0}} + O(1) \right)^{\#} (z)$

¹⁷Similar result in [Dragnev, Legg & Saff (2022)]

 φ^n

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

If $0 \notin \Omega \in \mathsf{QD}_n\left(\frac{c}{w-w_0}\right)$ $\Big)$ is bounded and s.c. with, $c > 0$, $w_0 \in \mathbb{C} \setminus \{0\}$ with Riemann map φ (wlog taking $\varphi(0)=$ w_0 , $\varphi'(0)>0)$, then

$$
(z) = \varphi^{n}(0) + \Phi_{\varphi}^{-1} \left(\frac{c}{n w^{n-1} (w - w_{0})} \right)^{\#} (z)
$$

= $w_{0}^{n} + \frac{c}{n \overline{w_{0}}^{n-1}} \Phi_{\varphi}^{-1} \left(\frac{1}{w - w_{0}} + O(1) \right)^{\#} (z)$
= $w_{0}^{n} + \frac{c}{n \overline{w_{0}}^{n-1}} \frac{\overline{\psi'(w_{0})}}{z^{-1} - \overline{\psi(w_{0})}} = w_{0}^{n} + \alpha z.$

¹⁷Similar result in [Dragnev, Legg & Saff (2022)]

 φ^n

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

If $0 \notin \Omega \in \mathsf{QD}_n\left(\frac{c}{w-w_0}\right)$ $\Big)$ is bounded and s.c. with, $c > 0$, $w_0 \in \mathbb{C} \setminus \{0\}$ with Riemann map φ (wlog taking $\varphi(0)=$ w_0 , $\varphi'(0)>0)$, then

$$
(z) = \varphi^{n}(0) + \Phi_{\varphi}^{-1} \left(\frac{c}{n w^{n-1} (w - w_{0})} \right)^{\#} (z)
$$

= $w_{0}^{n} + \frac{c}{n \overline{w_{0}}^{n-1}} \Phi_{\varphi}^{-1} \left(\frac{1}{w - w_{0}} + O(1) \right)^{\#} (z)$
= $w_{0}^{n} + \frac{c}{n \overline{w_{0}}^{n-1}} \frac{\overline{\psi'(w_{0})}}{z^{-1} - \overline{\psi(w_{0})}} = w_{0}^{n} + \alpha z.$

So Ω is an nth root of $\mathbb{D}_{\alpha}(w_0^n)$.

 φ^n

¹⁷Similar result in [Dragnev, Legg & Saff (2022)]

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

If $0 \notin \Omega \in \mathsf{QD}_n\left(\frac{c}{w-w_0}\right)$ $\Big)$ is bounded and s.c. with, $c > 0$, $w_0 \in \mathbb{C} \setminus \{0\}$ with Riemann map φ (wlog taking $\varphi(0)=$ w_0 , $\varphi'(0)>0)$, then

$$
(z) = \varphi^{n}(0) + \Phi_{\varphi}^{-1} \left(\frac{c}{n w^{n-1} (w - w_{0})} \right)^{\#} (z)
$$

= $w_{0}^{n} + \frac{c}{n \overline{w_{0}}^{n-1}} \Phi_{\varphi}^{-1} \left(\frac{1}{w - w_{0}} + O(1) \right)^{\#} (z)$
= $w_{0}^{n} + \frac{c}{n \overline{w_{0}}^{n-1}} \frac{\overline{\psi'(w_{0})}}{z^{-1} - \overline{\psi(w_{0})}} = w_{0}^{n} + \alpha z.$

So
$$
\Omega
$$
 is an nth root of $\mathbb{D}_{\alpha}(w_0^n)$. Because $1 \in \mathcal{A}(\Omega)$,
\n
$$
c = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{c}{w - w_0} dw = \int_{\Omega} n^2 |w|^{2(n-1)} dA(w) = \alpha^2.
$$
\nSo $\alpha = \sqrt{c}$.

¹⁷Similar result in [Dragnev, Legg & Saff (2022)]

 φ^n

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

If $0 \notin \Omega \in \mathsf{QD}_n\left(\frac{c}{w-w_0}\right)$ $\Big)$ is bounded and s.c. with, $c > 0$, $w_0 \in \mathbb{C} \setminus \{0\}$ with Riemann map φ (wlog taking $\varphi(0)=$ w_0 , $\varphi'(0)>0)$, then

$$
(z) = \varphi^{n}(0) + \Phi_{\varphi}^{-1} \left(\frac{c}{n w^{n-1} (w - w_{0})} \right)^{\#} (z)
$$

= $w_{0}^{n} + \frac{c}{n \overline{w_{0}}^{n-1}} \Phi_{\varphi}^{-1} \left(\frac{1}{w - w_{0}} + O(1) \right)^{\#} (z)$
= $w_{0}^{n} + \frac{c}{n \overline{w_{0}}^{n-1}} \frac{\overline{\psi'(w_{0})}}{z^{-1} - \overline{\psi(w_{0})}} = w_{0}^{n} + \alpha z.$

So Ω is an nth root of $\mathbb{D}_\alpha(w_0^n)$. Because $1 \in \mathcal{A}(\Omega)$, $c=\frac{1}{2}$ 2π \overline{a} ∂Ω c $\frac{c}{w-w_0}$ dw = \int Ω $n^2 |w|^{2(n-1)} dA(w) = \alpha^2$. So $\alpha =$ $\sqrt{c}. \quad \longrightarrow \ \Omega = \left(\mathbb{D}_{\sqrt{c}}(w_0^n) \right)^{\frac{1}{n}}$ (taking the principal branch of $(\cdot)^{\frac{1}{n}}).^{17}$

¹⁷Similar result in [Dragnev, Legg & Saff (2022)]

 φ^n

Preview: Formulae for Higher Order One Point PQDs **Caltech**

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

Lemma 5.2

Let $n \in \mathbb{Z}_+$, $\Omega \ni w_0$ be a bounded, simply connected domain admitting a Riemann map $\varphi : \mathbb{D} \to \Omega$, $\varphi(0) = w_0$, and $X_k(w_0)$ the space of rational functions $= 0$ at ∞ with a unique pole of order $k \in \mathbb{Z}_+$ at w_0 . Then,

1 If 0 $\notin \Omega$, then there exists $h \in X_k(w_0)$ such that $\Omega \in QD_n(h)$ if and only if there exist $z_1, \ldots, z_k \in \mathbb{D} \setminus \{0\}$ such that

$$
\varphi(z)=w_0\left(1-zz_1\right)^{\frac{1}{n}}\ldots\left(1-zz_k\right)^{\frac{1}{n}}.
$$

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

Lemma 5.2

Let $n \in \mathbb{Z}_+$, $\Omega \ni w_0$ be a bounded, simply connected domain admitting a Riemann map $\varphi : \mathbb{D} \to \Omega$, $\varphi(0) = w_0$, and $X_k(w_0)$ the space of rational functions $= 0$ at ∞ with a unique pole of order $k \in \mathbb{Z}_+$ at w_0 . Then,

1 If 0 $\notin \Omega$, then there exists $h \in X_k(w_0)$ such that $\Omega \in QD_n(h)$ if and only if there exist $z_1, \ldots, z_k \in \mathbb{D} \setminus \{0\}$ such that

$$
\varphi(z)=w_0\left(1-zz_1\right)^{\frac{1}{n}}\ldots\left(1-zz_k\right)^{\frac{1}{n}}.
$$

2 If $w_0 = 0$ (so $0 \in \Omega$), then there exists $h \in X_k(0)$ such that $\Omega \in QD_n(h)$ if and only if there exist $z_1, \ldots, z_{k-1} \in \mathbb{D} \setminus \{0\}$ and $a > 0$ such that $\varphi(z)=$ az $\left(1-z z_1\right)^{\frac{1}{n}}\ldots \left(1-z z_{k-1}\right)^{\frac{1}{n}}$.

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

Lemma 5.2

Let $n \in \mathbb{Z}_+$, $\Omega \ni w_0$ be a bounded, simply connected domain admitting a Riemann map $\varphi : \mathbb{D} \to \Omega$, $\varphi(0) = w_0$, and $X_k(w_0)$ the space of rational functions $= 0$ at ∞ with a unique pole of order $k \in \mathbb{Z}_+$ at w_0 . Then,

1 If 0 $\notin \Omega$, then there exists $h \in X_k(w_0)$ such that $\Omega \in QD_n(h)$ if and only if there exist $z_1, \ldots, z_k \in \mathbb{D} \setminus \{0\}$ such that

$$
\varphi(z) = w_0 (1 - z z_1)^{\frac{1}{n}} \dots (1 - z z_k)^{\frac{1}{n}}.
$$

2 If $w_0 = 0$ (so $0 \in \Omega$), then there exists $h \in X_k(0)$ such that $\Omega \in QD_n(h)$ if and only if there exist $z_1, \ldots, z_{k-1} \in \mathbb{D} \setminus \{0\}$ and $a > 0$ such that $\varphi(z)=$ az $\left(1-z z_1\right)^{\frac{1}{n}}\ldots \left(1-z z_{k-1}\right)^{\frac{1}{n}}$.

3 If $0 \in \Omega$ and $w_0 \neq 0$, then there exists $h \in X_k(w_0)$ such that $\Omega \in QD_n(h)$ if and only if there exist $z_1, \ldots, z_k \in \mathbb{D} \setminus \{0\}$ such that $\varphi(z) = \frac{w_0}{1-z}$ $|z_1|^2$ $z - z_1$ $\frac{z-z_1}{z-\overline{z_1}^{-1}}(1-z\overline{z_1})^{\frac{1}{n}}(1-zz_2)^{\frac{1}{n}}\ldots(1-zz_k)^{\frac{1}{n}}$.

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

Lemma 5.3

Let $\Omega \ni w_0$ be an unbounded, simply connected domain with conformal radius a admitting a Riemann map $\varphi:\mathbb{D}^+\to\Omega$, and $X_k(w_0)$ the space of rational functions = 0 at ∞ with a unique pole of order $k \in \mathbb{Z}_+$ at w_0 . Then

1 If 0 $\notin \Omega$, then there exists $h \in X_k(w_0)$ such that $\Omega \in QD_n(h)$ if and only if there exists $z_0 \in \mathbb{D} \setminus \{0\}$ with $\varphi(\overline{z_0}^{-1}) = w_0$, and $z_1, \ldots, z_k \in \mathbb{D} \setminus \{0, z_0\}$ such that

$$
\varphi(z)=az\left(1-\frac{z_0}{z}\right)^{-\frac{k}{n}}\left(1-\frac{z_1}{z}\right)^{\frac{1}{n}}\ldots\left(1-\frac{z_k}{z}\right)^{\frac{1}{n}}.
$$

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

Theory

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

Lemma 5.3

Let $\Omega \ni w_0$ be an unbounded, simply connected domain with conformal radius a admitting a Riemann map $\varphi:\mathbb{D}^+\to\Omega$, and $X_k(w_0)$ the space of rational functions = 0 at ∞ with a unique pole of order $k \in \mathbb{Z}_+$ at w₀. Then

1 If 0 $\notin \Omega$, then there exists $h \in X_k(w_0)$ such that $\Omega \in QD_n(h)$ if and only if there exists $z_0 \in \mathbb{D} \setminus \{0\}$ with $\varphi(\overline{z_0}^{-1}) = w_0$, and $z_1, \ldots, z_k \in \mathbb{D} \setminus \{0, z_0\}$ such that

$$
\varphi(z) = az \left(1 - \frac{z_0}{z}\right)^{-\frac{k}{n}} \left(1 - \frac{z_1}{z}\right)^{\frac{1}{n}} \dots \left(1 - \frac{z_k}{z}\right)^{\frac{1}{n}}
$$

.

2 If $0 \in \Omega$ then there exists $h \in X_k(w_0)$ such that $\Omega \in QD_n(h)$ if and only if there exist $z_0, z_1 \in \mathbb{D} \setminus \{0\}$ with $\varphi(\overline{z_0}^{-1}) = w_0$, and $z_2, \ldots, z_k \in \mathbb{D} \setminus \{0, z_0, z_1\}$ such that $\varphi(z) = az \left(1 - \frac{z_0}{z}\right)$ z $\int_{-\frac{k}{n}}^{-\frac{k}{n}} z - \overline{z_1}^{-1}$ $z - z_1$ $\left(1 - \frac{z_1}{z}\right)$ z $\int_{0}^{\frac{1}{n}} \dots \left(1 - \frac{z_k}{z}\right)$ z $\bigg\}^{\frac{1}{n}}$.

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0)

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

Lemma 5.4

Let Ω be an unbounded, simply connected domain with conformal radius a, admitting a Riemann map $\varphi : \mathbb{D}^- \to \Omega$. Then for each $n \in \mathbb{Z}_+$ and $k \in \mathbb{Z}_{\geq 0}$,

1 If 0 $\notin \Omega$, then there exists a polynomial h of degree k such that $\Omega \in QD_n(h)$ if and only if there exist $z_1, \ldots, z_{k+1} \in \mathbb{D} \setminus \{0\}$ such that

$$
\varphi(z)=az\left(1-\frac{z_1}{z}\right)^{\frac{1}{n}}\ldots\left(1-\frac{z_{k+1}}{z}\right)^{\frac{1}{n}}.
$$

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

Theory

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

Lemma 5.4

Let Ω be an unbounded, simply connected domain with conformal radius a, admitting a Riemann map $\varphi : \mathbb{D}^- \to \Omega$. Then for each $n \in \mathbb{Z}_+$ and $k \in \mathbb{Z}_{\geq 0}$,

1 If 0 $\notin \Omega$, then there exists a polynomial h of degree k such that $\Omega \in QD_n(h)$ if and only if there exist $z_1, \ldots, z_{k+1} \in \mathbb{D} \setminus \{0\}$ such that

$$
\varphi(z)=az\left(1-\frac{z_1}{z}\right)^{\frac{1}{n}}\ldots\left(1-\frac{z_{k+1}}{z}\right)^{\frac{1}{n}}.
$$

2 If $0 \in \Omega$, then there exists a polynomial h of degree k such that $\Omega \in QD_n(h)$ if and only if there exist $z_1, \ldots, z_{k+1} \in \mathbb{D} \setminus \{0\}$ such that $\varphi(z) = az \frac{z - \overline{z_1}^{-1}}{z}$ $z - z_1$ $\left(1 - \frac{z_1}{z}\right)$ z $\int^{\frac{1}{n}} \ldots \left(1 - \frac{z_{k+1}}{z_{k+1}}\right)$ z $\bigg\{\frac{1}{n}\bigg\}$.

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0) Domains

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

[Future work](#page-90-0)

• Generalize beyond simply connected domains

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0)

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature** Domains

- Generalize beyond simply connected domains
	- There are generalizations of Faber transform to multiply connected domains, but not as straightforward to work with

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0)

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature**

- Generalize beyond simply connected domains
	- There are generalizations of Faber transform to multiply connected domains, but not as straightforward to work with
- Characterize general relationship between function space of quadrature function, h, and that of the Riemann map, φ (upcoming)

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0)

Theory

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

• Generalize beyond simply connected domains

- There are generalizations of Faber transform to multiply connected domains, but not as straightforward to work with
- Characterize general relationship between function space of quadrature function, h, and that of the Riemann map, φ (upcoming)
	- QDs: $h \in \text{Rat} \iff \varphi \in \text{Rat}$

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0)

Theory

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature**

- Generalize beyond simply connected domains
	- There are generalizations of Faber transform to multiply connected domains, but not as straightforward to work with
- Characterize general relationship between function space of quadrature function, h, and that of the Riemann map, φ (upcoming)
	- QDs: $h \in \text{Rat} \iff \varphi \in \text{Rat}$
	- PQDs: $h \in \text{Rat} \iff \varphi^n \in \text{Rat}$

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0)

Theory

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature**

- Generalize beyond simply connected domains
	- There are generalizations of Faber transform to multiply connected domains, but not as straightforward to work with
- Characterize general relationship between function space of quadrature function, h, and that of the Riemann map, φ (upcoming)
	- QDs: $h \in \text{Rat} \iff \varphi \in \text{Rat}$
	- PQDs: $h \in \text{Rat} \iff \varphi^n \in \text{Rat}$
	- similar correspondences for WQDs with other weights

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0)

Theory

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature**

- Generalize beyond simply connected domains
	- There are generalizations of Faber transform to multiply connected domains, but not as straightforward to work with
- Characterize general relationship between function space of quadrature function, h, and that of the Riemann map, φ (upcoming)
	- QDs: $h \in \text{Rat} \iff \varphi \in \text{Rat}$
	- PQDs: $h \in \text{Rat} \iff \varphi^n \in \text{Rat}$
	- similar correspondences for WQDs with other weights
- Algebraic equations relating coeffs of h and $\varphi \longleftrightarrow$ uniqueness

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0)

Theory

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature**

- Generalize beyond simply connected domains
	- There are generalizations of Faber transform to multiply connected domains, but not as straightforward to work with
- Characterize general relationship between function space of quadrature function, h, and that of the Riemann map, φ (upcoming)
	- QDs: $h \in \text{Rat} \iff \varphi \in \text{Rat}$
	- PQDs: $h \in \text{Rat} \iff \varphi^n \in \text{Rat}$
	- similar correspondences for WQDs with other weights
- Algebraic equations relating coeffs of h and $\varphi \longleftrightarrow$ uniqueness
	- Some work by Ameur, Helmer & Tellander (2021)

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0)

Theory

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

• Generalize beyond simply connected domains

- There are generalizations of Faber transform to multiply connected domains, but not as straightforward to work with
- Characterize general relationship between function space of quadrature function, h, and that of the Riemann map, φ (upcoming)
	- QDs: $h \in \text{Rat} \iff \varphi \in \text{Rat}$
	- PQDs: $h \in \text{Rat} \iff \varphi^n \in \text{Rat}$
	- similar correspondences for WQDs with other weights
- Algebraic equations relating coeffs of h and $\varphi \longleftrightarrow$ uniqueness
	- Some work by Ameur, Helmer & Tellander (2021)
- Characterize boundary behaviour at singular points of metric (upcoming)

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0)

Theory

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature**

- Generalize beyond simply connected domains
	- There are generalizations of Faber transform to multiply connected domains, but not as straightforward to work with
- Characterize general relationship between function space of quadrature function, h, and that of the Riemann map, φ (upcoming)
	- QDs: $h \in \text{Rat} \iff \varphi \in \text{Rat}$
	- PQDs: $h \in \text{Rat} \iff \varphi^n \in \text{Rat}$
	- similar correspondences for WQDs with other weights
- Algebraic equations relating coeffs of h and $\varphi \longleftrightarrow$ uniqueness
	- Some work by Ameur, Helmer & Tellander (2021)
- Characterize boundary behaviour at singular points of metric (upcoming)
- Characterize topology of generalized QDs?

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0)

Theory

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

• Generalize beyond simply connected domains

- There are generalizations of Faber transform to multiply connected domains, but not as straightforward to work with
- Characterize general relationship between function space of quadrature function, h, and that of the Riemann map, φ (upcoming)
	- QDs: $h \in \text{Rat} \iff \varphi \in \text{Rat}$
	- PQDs: $h \in \text{Rat} \iff \varphi^n \in \text{Rat}$
	- similar correspondences for WQDs with other weights
- Algebraic equations relating coeffs of h and $\varphi \longleftrightarrow$ uniqueness
	- Some work by Ameur, Helmer & Tellander (2021)
- Characterize boundary behaviour at singular points of metric (upcoming)
- Characterize topology of generalized QDs?
	- Classical case: Lee & Makarov (2016)

Caltech That's all!

[Uniqueness of](#page-0-0) GQDs

Andrew Graven

[Quadrature](#page-2-0)

[Potential](#page-22-0) **Theory**

[The Faber](#page-30-0) Transform

Existence and [Uniqueness of](#page-37-0) One Point

[Power-Weighted](#page-69-0) **Quadrature**

[Future work](#page-90-0)

Thank you!